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-----------------------------------------------------------------------------ABSTRACT------------------------------------------------------- 
Independent Component Analysis (ICA) is the decomposition technique of a random vector of data into linear components which 
are “independent as possible.” Involves finding a suitable representation of multivariate data for computational and conceptual 
simplicity, the representation is often sought as a linear transformation of the original data. The linear transformation methods 
include Principal Component Analysis (PCA), Factor Analysis, and Projection Pursuit. Here attempt to transmit similar 
dimension multiple images as a single linear transformed image using Independent Component Analysis (ICA), Gaussian noise is 
added into linearly transformed image. We try to retrieve the original images one by one from noisy transformed image. The 
analysis is made by varying noise variance against peak signal to noise ratio (PSNR) with the original image. Our demonstrated 
work is highly useful in reducing bandwidth over the channel. 
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1. INTRODUCTION 

The independent component analysis (ICA) model is a 
generative model which means that it describes how the 
observed data are generated by a process of mixing the 
components. The independent components are latent 
variables meaning that they cannot be directly observed. 
Also the mixing matrix is assumed to be unknown. All we 
observe is the random vector [X], and we must estimate both 
[A] and [S] using it. The components [si] of the source 
should be statistically independent and must have    Non-
Gaussian distributions. The mixing matrix is square then 
after estimating the matrix [A] we can compute its inverse 
[W].     
                    X = As   (1) 
 
Source Signal   Observed Mixtures Estimation of (S) 
                       A                       W                     
                         
                

                       Mixing Process           Separating Process 

Fig1: Blind Source Separation Models 

Independent Component Analysis is the de-composition of a 
random vector in linear components which are �as 
independent as possible.�[1] This emerging technique 

appears as a powerful generic tool for data analysis and the 
processing of multi-sensor data recordings. In ICA, 
�independence� should be understood in its strong statistical 
sense it is not reduced to de-correlation because for the 
purpose of ICA [2], second order statistics fail to capture 
important features of a data set as shown by the fact that 
there are infinitely many linear transforms which de-
correlate the entries of a random vector. In ICA, the measure 
of choice for statistical independence is the �mutual 
information,� Its use as an objective function for ICA and 
this choice is strongly supported by the fact that it 
corresponds to the likelihood criterion when a model of 
independent components is optimized with respect to all its 
parameters the linear transform of interest and the 
distributions of the underlying components. 

2. Motivation  
Assume two people are speaking simultaneously in two 
different microphones, which you hold in different locations. 
The microphones give you two recorded time signals which 
we could denote by x1(t) and x2(t), with [x1] and [x2] the 
amplitudes, and [t] the time index. Each of these recorded 
signals is a weighted sum of the speech signals emitted by 
the two speakers which we denote by s1 (t) and s2 (t).  

          X1(t) = a11s1 + a12s2           (2) 

          X2(t) = a21s1 + a22s2   (3) 

S X U 
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Where [a11, a12, a21, and a22] are parameters that depend on 
the distances of the microphones from the speakers. It would 
be very useful if you could now estimate the two original 
speech signals s1 (t) and s2 (t) using only the recorded signals 
x1 (t) and x2 (t) [2]. This is called the cocktail-party problem. 
Actually, if we knew the parameters (aij) we could solve the 
above linear equation by classical methods. The point is 
however that if you don't know the (aij) the problem is 
considerably more difficult. One approach to solving this 
problem would be to use some information on the statistical 
properties of the signals si(t) to estimate the [aii] Actually, 
and perhaps surprisingly it turns out that it is enough to 
assume that s1 (t) and s2 (t) at each time instant t, are 
statistically independent [3]. This is not an unrealistic 
assumption in many cases and it need not be exactly true in 
practice. The recently developed technique of Independent 
Component Analysis, or ICA, can be used to estimate the 
[ai.j] based on the information of their independence which 
allows us to separate the two original source signals s1(t) and 
s2(t) from their mixtures x1(t) and x2(t). 

3. Definitions of linear Independent Component Analysis 
The problem of independent components analysis, or ICA 
considered here is the linear case .Though non-linear forms 
of ICA also exist. In the literature, at least three different 
basic definitions for linear ICA can be found though the 
differences between the definitions are usually not 
emphasized. This is probably due to the fact that ICA is such 
a new research topic most research has concentrated on the 
simplest one of these definitions. In the definitions, the 
observed m-dimensional random vector is denoted by            
x = (x1,��, xm). 
 
4. Scope  
The scope of the work involves understanding of .BMP or 
.JPEG files and header formats and implementing the 
concept of linearly transformed image (single image from 
the set of images) and calculating Mean square error, Peak 
signal to noise Ratio and Transmission protocols, PCA & 
ICA this also specifies how to retrieving the source 
(original) images from an linearly transformed image. This 
requires good programming skills in MATLAB including 
importing and exporting of data from MATLAB to database.  
 
5. Definitions of ICA 
 
5.1. General Definition of ICA 
ICA of the random vector (x) consists of finding a linear 
transform S = Wx so that the components [Si] are as 
independent as possible in the sense of maximizing some 
function F(s1,�.., sm) that measures independence[2,6,7]. 
 
5.2. Noisy ICA model 
ICA of a random vector [x] consists of estimating the 
following generative model for the data 
 
                  X = As + N                 (4) 
 
Where the latent variables (components) [Si] in the vector     
s = (s1,�.,sn) are assumed independent. The matrix A is a 

constant MXN 'mixing' matrix, and [n] is an m-dimensional 
random noise vector. 
 
5.3. Noise-Free ICA model 
 
ICA of a random vector (x) consists of estimating the 
following generative model for the data 
 
                         X = As  (5) 
 
Where the latent variables (components) [Si] in the vector   s 
= (s1,�.,sn) are assumed independent. The matrix A is a 
constant MXN �mixing� matrix, Here the noise vector has 
been omitted. 

6. Application of ICA 

6.1 Blind Source Separation 

Recently, blind source separation by Independent 
Component Analysis (ICA) [11] has received attention 
because of its potential applications in signal processing 
such as in speech recognition systems, telecommunications 
and medical signal processing. The goal of ICA is to recover 
independent sources given only sensor observations that are 
unknown linear mixtures of the unobserved independent 
source signals. In contrast to correlation-based 
transformations such as Principal Component Analysis 
(PCA), ICA not only de-correlates the signals (2nd-order 
statistics) but also reduces higher-order statistical 
dependencies attempting to make the signals as independent 
as possible. Many algorithms have been proposed from 
different approaches The Maximum Likelihood Estimation 
Negentropy Maximization Approach & Nonlinear PCA 
Algorithm [8, 11]. 

 

   
 

    
Fig 2: An illustration of blind source separation. 
Four source signals are Independent components. 
 

     

 
 
Fig 3: Due to some external circumstances, only linear 
Mixtures of the source signals  
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Fig 4: shows the estimates of the source signals. 
 
6.2 ICA for Text Mining 
Independent component analysis (ICA) was originally 
developed for signal processing applications. Recently it has 
been found out that ICA is a powerful tool for analyzing text 
document data as well, if the text documents are presented in 
a suitable numerical form. This opens up new possibilities 
for automatic analysis of large textual data bases finding the 
topics of documents and grouping them accordingly. First 
approaches of using ICA in the context of text data 
considered the data static. The dynamical text stream can be 
seen as a time series, and methods of time series processing 
may be used to extract the underlying characteristics of the 
data. As a preprocessing step the text stream is split into 
short windows, and from each window a T-dimensional 
vector is formed where T is the size of the vocabulary; T is 
typically several thousands of terms. The ith element of the 
vector indicates the frequency of the       ith vocabulary term 
in the window. The high dimensionality of the data is 
reduced by singular value decomposition as is often done 
before applying ICA-type algorithms on the data. 
 
 
7. Objectives  
7.1 Contrast Functions for ICA 
The estimation of the data model of independent component 
analysis is usually performed by formulating an objective 
function and then minimizing or maximizing it. Often such a 
function is called a contrast function also the terms loss 
function or cost function are used. We shall here use the 
term contrast function rather loosely meaning any function 
whose optimization enables the estimation of the 
independent components. 
 
ICA method = Objective function + Optimization algorithm. 
 
In the case of explicitly formulated objective functions one 
can use any of the classical methods of optimization for 
optimizing the objective function like (stochastic) gradient 
methods Newton-like methods, etc. In some cases however 
the algorithm and the estimation principle may be difficult to 
separate. The properties of the ICA method depend on both 
of the elements on the right-hand side of the above equation. 
 

� The Statistical properties (e.g., consistency, 
asymptotic variance, robustness) of the ICA method 
depend on the choice of the objective function. 

 
�   The Algorithmic properties (e.g., convergence 

speed, memory requirements, and numerical 
stability) depend on the optimization algorithm. 

 
 

8. Steps Involved in ICA 
 
8.1 Preprocessing for ICA 
Preprocessing steps of independent component analysis 
mainly involves  
 
  1. Centering 
  2. Whitening  
 
8.1.1 Centering 
 
The most basic and necessary preprocessing is to center [x] 
i.e. subtract its mean vector M = E{X} so as to make [x] a 
zero-mean variable. This preprocessing is made solely to 
simplify the ICA algorithms it does not mean that the mean 
could not be estimated. After estimating the mixing matrix 
[A] with centered data we can complete the estimation by 
adding the mean vector of [S] back to the centered estimates 
of [S]. 
 
8.1.2 Whitening 
 

Another useful preprocessing strategy in ICA is to first 
whiten the observed variables. This means that before the 
application of the ICA algorithm (and after centering), we 
transform the observed vector  linearly so that we obtain a 
new vector  which is white, i.e. its components are 
uncorrelated and their variances equal unity. The covariance 
matrix of equals the identity matrix. Some ICA algorithms 
require a preliminary sphering or whitening of the data , 
and even those algorithms that do not necessarily need 
sphering, often converge better with sphered data. Sphering 
means that the observed variable  is linearly transformed 
to a variable [v]. 
                           
                    V=Qx        (6) 

such that the covariance matrix of equals unity {VVT} = I 
In addition to sphering, PCA may allow us to determine the 
number of independent components (if m>n) if noise level is 
low, the energy of  is essentially concentrated on the 
subspace spanned by the (n) first principal components. 
 

9. Analyzing ICA Components by Injecting Noise 
In order to apply unsupervised learning algorithms to real 
world problems it is of fundamental importance to determine 
how trustworthy their results are. Boot strap re-sampling 
method that estimates the reliability and grouping of 
independent components found by algorithms for 
independent component  However, it is not straightforward 
for all existing ICA algorithms how to define a re-sampling 
strategy that preserves the statistical structure relevant to the 
considered ICA algorithm. 
 
This approach refers to the inherent ideas of ICA algorithms 
according to Cardoso�s three easy routes the statistical 
structure relevant for ICA algorithms are non- Gaussian, 
non-whiteness and non-stationary.  By partially destroys this 
structure by corrupting the data with stationary Gaussian 
noise. The motivation for this is that we expect reliable 
components to be extracted even if they have lost some of 
their structure. ICA models multivariate time-series 
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X(t) = [ X1(t),….,Xn(t)]T                       (7) 

 
As a linear combination 
 

X (t) = As (t)         (8) 
 
Of statistically independent source signals 
 

S (t) = [S1 (t),…………….,Sn(t)] T    (9) 

 
An algorithm for ICA estimates a mixing matrix [A] only 
from the observed signal x (t). Therefore, the true sources or 
equivalently the columns of the mixing matrix [A] can be 
estimated at best up to permutation and scaling. Real-world 
signals are usually given as a multivariate time series x (t) 
comprising of N components each of length T, which we 
represent as an N X T matrix. 
           

X = [X (1),……,X(t)]                        (10) 
 
We assume that all signals have mean zero. The ICA 
algorithm tries to estimate from this matrix [X] the mixing 
matrix [A] and therewith the de-mixing matrix W = A-1 such 
that the de-mixed signals, i.e. the rows of the matrix  
                          

                Y=WX                                   (11) 
 
10. Noise Generator 
 
This generates noise with the given mean & variance. The 
mean & variance values can be either scalar or vector when 
the variance is vector its length must be same as the vector in 
this case the co-variance matrix whose diagonal elements 
come from the variance vector.  
 
J = imnoise (I, type) adds noise of type to the intensity 
image [I]. Type is a string that can have one of these values. 

 
11. Peak Signal-to-Noise Ratio 
 
11.1 Description of PSNR 

The PSNR block computes the peak signal-to-noise ratio in 
decibels between two images. This ratio is often used as a 
quality measurement between the original and a compressed 
image. The higher the PSNR the better the quality of the 
compressed image. 

 

 

 
 

 
 

 Fig 5: Block Diagram of PSNR 

To compute the PSNR the block first calculates the mean-
squared error using the following equation 

         (12) 

 

In the above equation, M and N are the number of rows and 
columns in the input images respectively. Then the block 
computes the PSNR using the following equation. 
 
 

                                (13) 
 
In the above equation, R is the maximum fluctuation in the 
input image data type. For example, if the input image has a 
double-precision floating-point data type, then R is 1. If it 
has an 8-bit unsigned integer data type R is 255. 
 
12. Testing & Results 

Original Image   Original Image  

Original Image   Original Image  

             Original Image  
  
               Fig 6:  Original Images 
 

Linearly Transformed Image   0.01 Gaussian Noise  
 
 

Fig 7: Linearly Transformed Image & Noise Added Linearly 
Transformed Image 
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Fig 8: Retrieved Images form Noise added linearly 
transformed Image 

Peak Signal to Noise Ratio 
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13. CONCLUSION 

The independent component analysis or ICA model is a 
generative model which means that it describes how the 
observed data are generated by a process of mixing the 
components. The independent components are latent 
variables, meaning that they cannot be directly observed. 
Also the mixing matrix is assumed to be unknown. All we 
observe is the random vector [X], and we must estimate both 
[A] and [S] using it. The starting point for ICA is the very 
simple assumption that the components [si] are statistically 
independent and must also assume that the independent 
component must have non-Gaussian distributions. However, 

in the basic model we do not assume these distributions 
known for simplicity, we are also assuming that the unknown 
mixing matrix is square then after estimating the matrix [A], 
we can compute its inverse [W]. ICA is a very general-
purpose statistical technique in which observed random data 
are linearly transformed into components that are maximally 
independent from each other and simultaneously have 
``interesting'' distributions ICA can be formulated as the 
estimation of a latent variable model.    

The PSNR block computes the peak signal-to-noise ratio, in 
decibels between two images this ratio is often used as a 
quantity measurement between the original image and the 
compressed image. The higher the PSNR the better the 
quality of the compressed image. Hence we can observe that 
increase in the noise will reduce the peak signal to noise 
ratio (PSNR). 
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